Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 72
1.
Cell Rep ; 43(4): 114069, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38602876

The integrated stress response (ISR) is a key cellular signaling pathway activated by environmental alterations that represses protein synthesis to restore homeostasis. To prevent sustained damage, the ISR is counteracted by the upregulation of growth arrest and DNA damage-inducible 34 (GADD34), a stress-induced regulatory subunit of protein phosphatase 1 that mediates translation reactivation and stress recovery. Here, we uncover a novel ISR regulatory mechanism that post-transcriptionally controls the stability of PPP1R15A mRNA encoding GADD34. We establish that the 3' untranslated region of PPP1R15A mRNA contains an active AU-rich element (ARE) recognized by proteins of the ZFP36 family, promoting its rapid decay under normal conditions and stabilization for efficient expression of GADD34 in response to stress. We identify the tight temporal control of PPP1R15A mRNA turnover as a component of the transient ISR memory, which sets the threshold for cellular responsiveness and mediates adaptation to repeated stress conditions.


3' Untranslated Regions , Protein Phosphatase 1 , Animals , Humans , Mice , 3' Untranslated Regions/genetics , Adaptation, Physiological/genetics , AU Rich Elements/genetics , HEK293 Cells , Protein Phosphatase 1/metabolism , Protein Phosphatase 1/genetics , RNA Stability/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Stress, Physiological/genetics , Tristetraprolin/metabolism , Tristetraprolin/genetics
2.
J Cell Biol ; 222(12)2023 12 04.
Article En | MEDLINE | ID: mdl-37956386

Current models posit that nuclear speckles (NSs) serve as reservoirs of splicing factors and facilitate posttranscriptional mRNA processing. Here, we discovered that ribotoxic stress induces a profound reorganization of NSs with enhanced recruitment of factors required for splice-site recognition, including the RNA-binding protein TIAR, U1 snRNP proteins and U2-associated factor 65, as well as serine 2 phosphorylated RNA polymerase II. NS reorganization relies on the stress-activated p38 mitogen-activated protein kinase (MAPK) pathway and coincides with splicing activation of both pre-existing and newly synthesized pre-mRNAs. In particular, ribotoxic stress causes targeted excision of retained introns from pre-mRNAs of immediate early genes (IEGs), whose transcription is induced during the stress response. Importantly, enhanced splicing of the IEGs ZFP36 and FOS is accompanied by relocalization of the corresponding nuclear mRNA foci to NSs. Our study reveals NSs as a dynamic compartment that is remodeled under stress conditions, whereby NSs appear to become sites of IEG transcription and efficient cotranscriptional splicing.


Genes, Immediate-Early , Nuclear Speckles , RNA Splicing , Introns , Ribonucleoprotein, U1 Small Nuclear/genetics , Ribonucleoprotein, U1 Small Nuclear/metabolism , RNA Precursors/genetics , RNA Precursors/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Humans
3.
EMBO J ; 42(19): e112507, 2023 10 04.
Article En | MEDLINE | ID: mdl-37609797

Queuosine (Q) is a modified nucleoside at the wobble position of specific tRNAs. In mammals, queuosinylation is facilitated by queuine uptake from the gut microbiota and is introduced into tRNA by the QTRT1-QTRT2 enzyme complex. By establishing a Qtrt1 knockout mouse model, we discovered that the loss of Q-tRNA leads to learning and memory deficits. Ribo-Seq analysis in the hippocampus of Qtrt1-deficient mice revealed not only stalling of ribosomes on Q-decoded codons, but also a global imbalance in translation elongation speed between codons that engage in weak and strong interactions with their cognate anticodons. While Q-dependent molecular and behavioral phenotypes were identified in both sexes, female mice were affected more severely than males. Proteomics analysis confirmed deregulation of synaptogenesis and neuronal morphology. Together, our findings provide a link between tRNA modification and brain functions and reveal an unexpected role of protein synthesis in sex-dependent cognitive performance.


Nucleoside Q , RNA, Transfer , Female , Mice , Animals , Nucleoside Q/genetics , RNA, Transfer/genetics , RNA, Transfer/metabolism , Anticodon , Protein Biosynthesis , Codon , Mammals/genetics
5.
Genome Biol ; 23(1): 193, 2022 09 12.
Article En | MEDLINE | ID: mdl-36096941

BACKGROUND: Cytoplasmic polyadenylation element-binding protein 4 (CPEB4) is known to associate with cytoplasmic polyadenylation elements (CPEs) located in the 3' untranslated region (UTR) of specific mRNAs and assemble an activator complex promoting the translation of target mRNAs through cytoplasmic polyadenylation. RESULTS: Here, we find that CPEB4 is part of an alternative repressor complex that mediates mRNA degradation by associating with the evolutionarily conserved CCR4-NOT deadenylase complex. We identify human CPEB4 as an RNA-binding protein (RBP) with enhanced association to poly(A) RNA upon inhibition of class I histone deacetylases (HDACs), a condition known to cause widespread degradation of poly(A)-containing mRNA. Photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) analysis using endogenously tagged CPEB4 in HeLa cells reveals that CPEB4 preferentially binds to the 3'UTR of immediate early gene mRNAs, at G-containing variants of the canonical U- and A-rich CPE located in close proximity to poly(A) sites. By transcriptome-wide mRNA decay measurements, we find that the strength of CPEB4 binding correlates with short mRNA half-lives and that loss of CPEB4 expression leads to the stabilization of immediate early gene mRNAs. Akin to CPEB4, we demonstrate that CPEB1 and CPEB2 also confer mRNA instability by recruitment of the CCR4-NOT complex. CONCLUSIONS: While CPEB4 was previously known for its ability to stimulate cytoplasmic polyadenylation, our findings establish an additional function for CPEB4 as the RNA adaptor of a repressor complex that enhances the degradation of short-lived immediate early gene mRNAs.


Genes, Immediate-Early , RNA Stability , 3' Untranslated Regions , HeLa Cells , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
6.
Int J Mol Sci ; 23(10)2022 May 17.
Article En | MEDLINE | ID: mdl-35628412

Mitochondrial stress is involved in many pathological conditions and triggers the integrated stress response (ISR). The ISR is initiated by phosphorylation of the eukaryotic translation initiation factor (eIF) 2α and results in global inhibition of protein synthesis, while the production of specific proteins important for the stress response and recovery is favored. The stalled translation preinitiation complexes phase-separate together with local RNA binding proteins into cytoplasmic stress granules (SG), which are important for regulation of cell signaling and survival under stress conditions. Here we found that mitochondrial inhibition by sodium azide (NaN3) in mammalian cells leads to translational inhibition and formation of SGs, as previously shown in yeast. Although mammalian NaN3-induced SGs are very small, they still contain the canonical SG proteins Caprin 1, eIF4A, eIF4E, eIF4G and eIF3B. Similar to FCCP and oligomycine, other mitochodrial stressors that cause SG formation, NaN3-induced SGs are formed by an eIF2α phosphorylation-independent mechanisms. Finally, we discovered that as shown for arsenite (ASN), but unlike FCCP or heatshock stress, Thioredoxin 1 (Trx1) is required for formation of NaN3-induced SGs.


Eukaryotic Initiation Factor-2 , Stress Granules , Animals , Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone , Cytoplasmic Granules/metabolism , Eukaryotic Initiation Factor-2/metabolism , Mammals/metabolism , Phosphorylation , RNA-Binding Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Sodium Azide/pharmacology
7.
RNA Biol ; 19(1): 437-452, 2022.
Article En | MEDLINE | ID: mdl-35388737

The transcription factor p53 exerts its tumour suppressive effect through transcriptional activation of numerous target genes controlling cell cycle arrest, apoptosis, cellular senescence and DNA repair. In addition, there is evidence that p53 influences the translation of specific mRNAs, including translational inhibition of ribosomal protein synthesis and translational activation of MDM2. A challenge in the analysis of translational control is that changes in mRNA abundance exert a kinetic (passive) effect on ribosome densities. In order to separate these passive effects from active regulation of translation efficiency in response to p53 activation, we conducted a comprehensive analysis of translational regulation by comparative analysis of mRNA levels and ribosome densities upon DNA damage induced by neocarzinostatin in wild-type and TP53-/- HCT116 colorectal carcinoma cells. Thereby, we identified a specific group of mRNAs that are preferentially translated in response to p53 activation, many of which correspond to p53 target genes including MDM2, SESN1 and CDKN1A. By subsequent polysome profile analysis of SESN1 and CDKN1A mRNA, we could demonstrate that p53-dependent translational activation relies on a combination of inducing the expression of translationally advantageous isoforms and trans-acting mechanisms that further enhance the translation of these mRNAs.


Ribosomes , Tumor Suppressor Protein p53 , Cell Cycle Checkpoints , Gene Expression Regulation , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribosomes/genetics , Ribosomes/metabolism , Transcription Factors/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
8.
Sci Adv ; 8(12): eabk2022, 2022 Mar 25.
Article En | MEDLINE | ID: mdl-35319985

Stress granules (SGs) are formed in the cytosol as an acute response to environmental cues and activation of the integrated stress response (ISR), a central signaling pathway controlling protein synthesis. Using chronic virus infection as stress model, we previously uncovered a unique temporal control of the ISR resulting in recurrent phases of SG assembly and disassembly. Here, we elucidate the molecular network generating this fluctuating stress response by integrating quantitative experiments with mathematical modeling and find that the ISR operates as a stochastic switch. Key elements controlling this switch are the cooperative activation of the stress-sensing kinase PKR, the ultrasensitive response of SG formation to the phosphorylation of the translation initiation factor eIF2α, and negative feedback via GADD34, a stress-induced subunit of protein phosphatase 1. We identify GADD34 messenger RNA levels as the molecular memory of the ISR that plays a central role in cell adaptation to acute and chronic stress.

9.
Methods Mol Biol ; 2428: 361-379, 2022.
Article En | MEDLINE | ID: mdl-35171491

Stress granule (SG)-based RNA interference (RNAi) screening is a powerful method to discover factors that control protein synthesis and aggregation, as well as regulators of SG assembly and disassembly. Here, we describe how to set up and optimize a large-scale siRNA screen, and give a detailed outline for the automated quantification of SGs as a visual readout. Hit evaluation via calculated Z scores provides a list of candidates for further in-depth studies.


Cytoplasmic Granules , Stress Granules , Cytoplasmic Granules/metabolism , Protein Biosynthesis , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Stress, Physiological
10.
Nat Commun ; 12(1): 7175, 2021 12 09.
Article En | MEDLINE | ID: mdl-34887419

The CCR4-NOT complex acts as a central player in the control of mRNA turnover and mediates accelerated mRNA degradation upon HDAC inhibition. Here, we explored acetylation-induced changes in the composition of the CCR4-NOT complex by purification of the endogenously tagged scaffold subunit NOT1 and identified RNF219 as an acetylation-regulated cofactor. We demonstrate that RNF219 is an active RING-type E3 ligase which stably associates with CCR4-NOT via NOT9 through a short linear motif (SLiM) embedded within the C-terminal low-complexity region of RNF219. By using a reconstituted six-subunit human CCR4-NOT complex, we demonstrate that RNF219 inhibits deadenylation through the direct interaction of the α-helical SLiM with the NOT9 module. Transcriptome-wide mRNA half-life measurements reveal that RNF219 attenuates global mRNA turnover in cells, with differential requirement of its RING domain. Our results establish RNF219 as an inhibitor of CCR4-NOT-mediated deadenylation, whose loss upon HDAC inhibition contributes to accelerated mRNA turnover.


RNA, Messenger/metabolism , Receptors, CCR4/metabolism , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism , Adenosine Monophosphate/metabolism , HeLa Cells , Humans , Protein Binding , RNA Stability , RNA, Messenger/chemistry , RNA, Messenger/genetics , Receptors, CCR4/genetics , Transcription Factors/genetics , Ubiquitin-Protein Ligases/genetics
11.
Nat Methods ; 18(9): 1068-1074, 2021 09.
Article En | MEDLINE | ID: mdl-34480152

In general, mRNAs are assumed to be loaded with ribosomes instantly upon entry into the cytoplasm. To measure ribosome density (RD) on nascent mRNA, we developed nascent Ribo-Seq by combining Ribo-Seq with progressive 4-thiouridine labeling. In mouse macrophages, we determined experimentally the lag between the appearance of nascent mRNA and its association with ribosomes, which was calculated to be 20-22 min for bulk mRNA. In mouse embryonic stem cells, nRibo-Seq revealed an even stronger lag of 35-38 min in ribosome loading. After stimulation of macrophages with lipopolysaccharide, the lag between cytoplasmic and translated mRNA leads to uncoupling between input and ribosome-protected fragments, which gives rise to distorted RD measurements under conditions where mRNA amounts are far from steady-state expression. As a result, we demonstrate that transcriptional changes affect RD in a passive way.


Protein Biosynthesis , Ribosomes/genetics , Ribosomes/metabolism , Sequence Analysis, RNA/methods , Animals , Cytoplasm/genetics , Kinetics , Lipopolysaccharides/pharmacology , Mice , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/physiology , RAW 264.7 Cells , RNA, Messenger/genetics , Ribosomal Proteins/biosynthesis , Ribosomal Proteins/genetics , Ribosomes/drug effects , Time Factors
12.
Food Chem Toxicol ; 156: 112508, 2021 Oct.
Article En | MEDLINE | ID: mdl-34390821

Arsenic is a major water pollutant and health hazard, leading to acute intoxication and, upon chronic exposure, several diseases including cancer development. Arsenic exerts its pronounced cellular toxicity through its trivalent oxide arsenite (ASN), which directly inhibits numerous proteins including Thioredoxin 1 (Trx1), and causes severe oxidative stress. Cells respond to arsenic by inhibition of protein synthesis and subsequent assembly of stress granules (SGs), cytoplasmic condensates of stalled mRNAs, translation factors and RNA-binding proteins. The biological role of SGs is diverse and not completely understood; they are important for regulation of cell signaling and survival under stress conditions, and for adapting de novo protein synthesis to the protein folding capacity during the recovery from stress. In this study, we identified Trx1 as a novel component of SGs. Trx1 is required for the assembly of ASN-induced SGs, but not for SGs induced by energy deprivation or heat shock. Importantly, our results show that Trx1 is essential for cell survival upon acute exposure to ASN, through a mechanism that is independent of translation inhibition.


Arsenites/toxicity , Stress Granules/metabolism , Thioredoxins/metabolism , Biomarkers , Cell Cycle/drug effects , Gene Expression Regulation/drug effects , Gene Knockdown Techniques , HeLa Cells , Humans , Oxidative Stress , Stress Granules/chemistry , Thioredoxins/genetics
13.
RNA Biol ; 18(12): 2450-2465, 2021 12.
Article En | MEDLINE | ID: mdl-34060423

Antiproliferative BTG/Tob proteins interact directly with the CAF1 deadenylase subunit of the CCR4-NOT complex. This binding requires the presence of two conserved motifs, boxA and boxB, characteristic of the BTG/Tob APRO domain. Consistently, these proteins were shown to stimulate mRNA deadenylation and decay in several instances. Two members of the family, BTG1 and BTG2, were reported further to associate with the protein arginine methyltransferase PRMT1 through a motif, boxC, conserved only in this subset of proteins. We recently demonstrated that BTG1 and BTG2 also contact the first RRM domain of the cytoplasmic poly(A) binding protein PABPC1. To decipher the mode of interaction of BTG1 and BTG2 with partners, we performed nuclear magnetic resonance experiments as well as mutational and biochemical analyses. Our data demonstrate that, in the context of an APRO domain, the boxC motif is necessary and sufficient to allow interaction with PABPC1 but, unexpectedly, that it is not required for BTG2 association with PRMT1. We show further that the presence of a boxC motif in an APRO domain endows it with the ability to stimulate deadenylation in cellulo and in vitro. Overall, our results identify the molecular interface allowing BTG1 and BTG2 to activate deadenylation, a process recently shown to be necessary for maintaining T-cell quiescence.


Immediate-Early Proteins/metabolism , Neoplasm Proteins/metabolism , Poly A/metabolism , Polyadenylation , Protein-Arginine N-Methyltransferases/metabolism , RNA, Messenger/chemistry , Repressor Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Amino Acid Motifs , HEK293 Cells , Humans , Immediate-Early Proteins/genetics , Neoplasm Proteins/genetics , Poly A/genetics , Protein Binding , Protein-Arginine N-Methyltransferases/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Repressor Proteins/genetics , Tumor Suppressor Proteins/genetics
14.
EMBO J ; 40(13): e103311, 2021 07 01.
Article En | MEDLINE | ID: mdl-33978236

Due to their capability to transport chemicals or proteins into target cells, cell-penetrating peptides (CPPs) are being developed as therapy delivery tools. However, and despite their interesting properties, arginine-rich CPPs often show toxicity for reasons that remain poorly understood. Using a (PR)n dipeptide repeat that has been linked to amyotrophic lateral sclerosis (ALS) as a model of an arginine-rich CPP, we here show that the presence of (PR)n leads to a generalized displacement of RNA- and DNA-binding proteins from chromatin and mRNA. Accordingly, any reaction involving nucleic acids, such as RNA transcription, translation, splicing and degradation, or DNA replication and repair, is impaired by the presence of the CPPs. Interestingly, the effects of (PR)n are fully mimicked by protamine, a small arginine-rich protein that displaces histones from chromatin during spermatogenesis. We propose that widespread coating of nucleic acids and consequent displacement of RNA- and DNA-binding factors from chromatin and mRNA accounts for the toxicity of arginine-rich CPPs, including those that have been recently associated with the onset of ALS.


Arginine/genetics , Cell-Penetrating Peptides/genetics , DNA-Binding Proteins/genetics , RNA-Binding Proteins/genetics , Amyotrophic Lateral Sclerosis/genetics , Cell Line, Tumor , Chromatin/genetics , DNA/genetics , HeLa Cells , Histones/genetics , Humans , Nucleic Acids/genetics , RNA/genetics , RNA Splicing/genetics , RNA, Messenger/genetics , Spermatogenesis/genetics
15.
Viruses ; 12(9)2020 09 04.
Article En | MEDLINE | ID: mdl-32899736

Cells have evolved highly specialized sentinels that detect viral infection and elicit an antiviral response. Among these, the stress-sensing protein kinase R, which is activated by double-stranded RNA, mediates suppression of the host translation machinery as a strategy to limit viral replication. Non-translating mRNAs rapidly condensate by phase separation into cytosolic stress granules, together with numerous RNA-binding proteins and components of signal transduction pathways. Growing evidence suggests that the integrated stress response, and stress granules in particular, contribute to antiviral defense. This review summarizes the current understanding of how stress and innate immune signaling act in concert to mount an effective response against virus infection, with a particular focus on the potential role of stress granules in the coordination of antiviral signaling cascades.


Cytoplasmic Granules/immunology , Virus Diseases/immunology , Virus Diseases/virology , Virus Physiological Phenomena , Animals , Cytoplasmic Granules/virology , Humans , Virus Diseases/genetics , Virus Replication , Viruses/genetics , Viruses/immunology
16.
Metab Eng ; 61: 58-68, 2020 09.
Article En | MEDLINE | ID: mdl-32413407

Many metabolic pathways in bacteria are regulated by metabolite sensing riboswitches that exert their control at the level of transcription employing a termination-antitermination mechanism. These riboswitches represent engineering targets to modulate expression of genes and operons relevant for the biotechnological production of commercially relevant compounds. We show that removal of the transcriptional riboswitches that control purine biosynthesis and riboflavin biosynthesis in Bacillus subtilis leads to auxotrophic strains. As an alternative, we report a rational approach for engineering transcriptional riboswitches independently from the availability of structural data. This approach consists in the identification and deletion of a key nucleotide sequence exclusively involved in transcription termination without affecting formation of other secondary and tertiary structures, which can be involved in other functions. To demonstrate the efficacy of our approach, we tested it with regard to deregulation of the purine and the riboflavin biosynthetic pathways in B. subtilis. Following validation of the engineered transcriptional riboswitches using specialized reporter strains, our approach was implemented into a B. subtilis wild-type strain employing CRISPR-Cas9 genome editing. The resulting purine and riboflavin production strains were characterized at the level of gene expression, metabolite synthesis and growth, and a substantial enhancement was measured at each level. Moreover, applying our approach to deregulate the purine pathway of an industrial riboflavin overproducing strain with impaired growth led to an increase in biomass by 53%, which resulted in an enhanced total production of riboflavin in the culture.


Bacillus subtilis/metabolism , Gene Expression Regulation, Bacterial , Genetic Engineering , Purines/biosynthesis , RNA, Bacterial , Riboflavin/biosynthesis , Riboswitch , Transcription, Genetic , Bacillus subtilis/genetics , RNA, Bacterial/biosynthesis , RNA, Bacterial/genetics
17.
J Cell Biol ; 219(3)2020 03 02.
Article En | MEDLINE | ID: mdl-32040547

Cell proliferation exerts a high demand on protein synthesis, yet the mechanisms coupling the two processes are not fully understood. A kinase and phosphatase screen for activators of translation, based on the formation of stress granules in human cells, revealed cell cycle-associated kinases as major candidates. CDK1 was identified as a positive regulator of global translation, and cell synchronization experiments showed that this is an extramitotic function of CDK1. Different pathways including eIF2α, 4EBP, and S6K1 signaling contribute to controlling global translation downstream of CDK1. Moreover, Ribo-Seq analysis uncovered that CDK1 exerts a particularly strong effect on the translation of 5'TOP mRNAs, which includes mRNAs encoding ribosomal proteins and several translation factors. This effect requires the 5'TOP mRNA-binding protein LARP1, concurrent to our finding that LARP1 phosphorylation is strongly dependent on CDK1. Thus, CDK1 provides a direct means to couple cell proliferation with biosynthesis of the translation machinery and the rate of protein synthesis.


CDC2 Protein Kinase/metabolism , Cell Proliferation , Uterine Cervical Neoplasms/enzymology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Autoantigens/genetics , Autoantigens/metabolism , CDC2 Protein Kinase/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Eukaryotic Initiation Factor-2/genetics , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factors/genetics , Eukaryotic Initiation Factors/metabolism , Female , Fibroblasts/enzymology , Gene Expression Regulation, Enzymologic , HEK293 Cells , HeLa Cells , Humans , Kinetics , Mice, Inbred C57BL , Phosphorylation , Protein Biosynthesis , RNA 5' Terminal Oligopyrimidine Sequence , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/genetics , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Signal Transduction , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , SS-B Antigen
18.
EMBO J ; 39(3): e104154, 2020 02 03.
Article En | MEDLINE | ID: mdl-31919860

The cellular response to heat shock requires massive adaptation of gene expression driven by the transcription factor HSF1, which assembles in nuclear stress bodies together with human satellite III RNA and numerous splicing factors. In this issue of The EMBO Journal, Ninomiya et al demonstrate that nuclear stress bodies serve as a platform for phosphorylation of the SR protein SRSF9 by the CLK1 kinase, which promotes retention of a large number of introns during the recovery phase from heat shock.


RNA, Long Noncoding , Heat-Shock Response , Humans , Introns , Phosphorylation , Transcription Factors
19.
Nat Chem Biol ; 15(1): 5-6, 2019 01.
Article En | MEDLINE | ID: mdl-30531906
20.
EMBO Rep ; 20(1)2019 01.
Article En | MEDLINE | ID: mdl-30538118

The G2/M checkpoint coordinates DNA replication with mitosis and thereby prevents chromosome segregation in the presence of unreplicated or damaged DNA Here, we show that the RNA-binding protein TIAR is essential for the G2/M checkpoint and that TIAR accumulates in nuclear foci in late G2 and prophase in cells suffering from replication stress. These foci, which we named G2/M transition granules (GMGs), occur at low levels in normally cycling cells and are strongly induced by replication stress. In addition to replication stress response proteins, GMGs contain factors involved in RNA metabolism as well as CDK1. Depletion of TIAR accelerates mitotic entry and leads to chromosomal instability in response to replication stress, in a manner that can be alleviated by the concomitant depletion of Cdc25B or inhibition of CDK1. Since TIAR retains CDK1 in GMGs and attenuates CDK1 activity, we propose that the assembly of GMGs may represent a so far unrecognized mechanism that contributes to the activation of the G2/M checkpoint in mammalian cells.


CDC2 Protein Kinase/genetics , G2 Phase Cell Cycle Checkpoints/genetics , RNA-Binding Proteins/genetics , cdc25 Phosphatases/genetics , Cell Cycle/genetics , Chromosome Segregation/genetics , DNA Damage/genetics , DNA Replication/genetics , HeLa Cells , Humans , Mitosis/genetics , Phosphorylation
...